Sabtu, 26 Maret 2016

Sistem Pendukung Keputusan 2






TAHAPAN- TAHAPAN AHP

Dalam metode AHP dilakukan langkah-langkah sebagai berikut (Kadarsyah Suryadi dan Ali Ramdhani, 1998) :

1.    Mendefinisikan masalah dan menentukan solusi yang diinginkan.

Dalam tahap ini kita berusaha menentukan masalah yang akan kita pecahkan secara jelas, detail dan mudah dipahami. Dari masalah yang ada kita coba tentukan solusi yang mungkin cocok bagi masalah tersebut. Solusi dari masalah mungkin berjumlah lebih dari satu. Solusi tersebut nantinya kita kembangkan lebih lanjut dalam tahap berikutnya.

2.  Membuat struktur hierarki yang diawali dengan tujuan utama.

Setelah menyusun tujuan utama sebagai level teratas akan disusun level hirarki yang berada di bawahnya yaitu kriteria-kriteria yang cocok untuk mempertimbangkan atau menilai alternatif yang kita berikan dan menentukan alternatif tersebut. Tiap kriteria mempunyai intensitas yang berbeda-beda. Hirarki dilanjutkan dengan subkriteria (jika mungkin diperlukan).

3.    Membuat matrik perbandingan berpasangan yang menggambarkan kontribusi relatif atau pengaruh setiap elemen terhadap tujuan atau kriteria yang setingkat di atasnya.

Matriks yang digunakan bersifat sederhana, memiliki kedudukan kuat untuk kerangka konsistensi, mendapatkan informasi lain yang mungkin dibutuhkan dengan semua perbandingan yang mungkin dan mampu menganalisis kepekaan prioritas secara keseluruhan untuk perubahan pertimbangan. Pendekatan dengan matriks mencerminkan aspek ganda dalam prioritas yaitu mendominasi dan didominasi. Perbandingan dilakukan berdasarkan judgment dari pengambil keputusan dengan menilai tingkat kepentingan suatu elemen dibandingkan elemen lainnya. Untuk memulai proses perbandingan berpasangan dipilih sebuah kriteria dari level paling atas hirarki misalnya K dan kemudian dari level di bawahnya diambil elemen yang akan dibandingkan misalnya E1,E2,E3,E4,E5.

4.    Melakukan Mendefinisikan perbandingan berpasangan sehingga diperoleh jumlah penilaian seluruhnya sebanyak n x [(n-1)/2] buah, dengan n adalah banyaknya elemen yang dibandingkan.

Hasil perbandingan dari masing-masing elemen akan berupa angka dari 1 sampai 9 yang menunjukkan perbandingan tingkat kepentingan suatu elemen. Apabila suatu elemen dalam matriks dibandingkan dengan dirinya sendiri maka hasil perbandingan diberi nilai 1. Skala 9 telah terbukti dapat diterima dan bisa membedakan intensitas antar elemen. Hasil perbandingan tersebut diisikan pada sel yang bersesuaian dengan elemen yang dibandingkan. Skala perbandingan perbandingan berpasangan dan maknanya yang diperkenalkan oleh Saaty bisa dilihat di bawah.


Intensitas Kepentingan

1 = Kedua elemen sama pentingnya, Dua elemen mempunyai pengaruh yang sama besar

3 = Elemen yang satu sedikit lebih penting daripada elemen yanga lainnya, Pengalaman dan penilaian sedikit menyokong satu elemen dibandingkan elemen yang lainnya

5 = Elemen yang satu lebih penting daripada yang lainnya, Pengalaman dan penilaian sangat kuat menyokong satu elemen dibandingkan elemen yang lainnya

7 = Satu elemen jelas lebih mutlak penting daripada elemen lainnya, Satu elemen yang kuat disokong dan dominan terlihat dalam praktek.

9 = Satu elemen mutlak penting daripada elemen lainnya, Bukti yang mendukung elemen yang satu terhadap elemen lain memeliki tingkat penegasan tertinggi yang mungkin menguatkan.

2,4,6,8 = Nilai-nilai antara dua nilai pertimbangan-pertimbangan yang berdekatan, Nilai ini diberikan bila ada dua kompromi di antara 2 pilihan

Kebalikan = Jika untuk aktivitas i mendapat satu angka dibanding dengan aktivitas j , maka j mempunyai nilai kebalikannya dibanding dengan i

5.    Menghitung nilai eigen dan menguji konsistensinya.

Jika tidak konsisten maka pengambilan data diulangi.

6.    Mengulangi langkah 3,4, dan 5 untuk seluruh tingkat hirarki.

7.    Menghitung vektor eigen dari setiap matriks perbandingan berpasangan yang merupakan bobot setiap elemen untuk penentuan prioritas elemen-elemen pada tingkat hirarki terendah sampai mencapai tujuan. Penghitungan dilakukan lewat cara menjumlahkan nilai setiap kolom dari matriks, membagi setiap nilai dari kolom dengan total kolom yang bersangkutan untuk memperoleh normalisasi matriks, dan menjumlahkan nilai-nilai dari setiap baris dan membaginya dengan jumlah elemen untuk mendapatkan rata-rata.

8.    Memeriksa konsistensi hirarki. Yang diukur dalam AHP adalah rasio konsistensi dengan melihat index konsistensi. Konsistensi yang diharapkan adalah yang mendekati sempurna agar menghasilkan keputusan yang mendekati valid. Walaupun sulit untuk mencapai yang sempurna, rasio konsistensi diharapkan kurang dari atau sama dengan 10 %.


PRINSIP DASAR DAN AKSIOMA AHP

AHP didasarkan atas 3 prinsip dasar yaitu:

1.    Dekomposisi

Dengan prinsip ini struktur masalah yang kompleks dibagi menjadi bagian-bagian secara hierarki. Tujuan didefinisikan dari yang umum sampai khusus. Dalam bentuk yang paling sederhana struktur akan dibandingkan tujuan, kriteria dan level alternatif. Tiap himpunan alternatif mungkin akan dibagi lebih jauh menjadi tingkatan yang lebih detail, mencakup lebih banyak kriteria yang lain. Level paling atas dari hirarki merupakan tujuan yang terdiri atas satu elemen. Level berikutnya mungkin mengandung beberapa elemen, di mana elemen-elemen tersebut bisa dibandingkan, memiliki kepentingan yang hampir sama dan tidak memiliki perbedaan yang terlalu mencolok. Jika perbedaan terlalu besar harus dibuatkan level yang baru.

2.    Perbandingan penilaian/pertimbangan (comparative judgments).

Dengan prinsip ini akan dibangun perbandingan berpasangan dari semua elemen yang ada dengan tujuan menghasilkan skala kepentingan relatif dari elemen. Penilaian menghasilkan skala penilaian yang berupa angka. Perbandingan berpasangan dalam bentuk matriks jika dikombinasikan akan menghasilkan prioritas.


3.    Sintesa Prioritas

Sintesa prioritas dilakukan dengan mengalikan prioritas lokal dengan prioritas dari kriteria bersangkutan di level atasnya dan menambahkannya ke tiap elemen dalam level yang dipengaruhi kriteria. Hasilnya berupa gabungan atau dikenal dengan prioritas global yang kemudian digunakan untuk memboboti prioritas lokal dari elemen di level terendah sesuai dengan kriterianya.

AHP didasarkan atas 3 aksioma utama yaitu :

1.    Aksioma Resiprokal

Aksioma ini menyatakan jika PC (EA,EB) adalah sebuah perbandingan berpasangan antara elemen A dan elemen B, dengan memperhitungkan C sebagai elemen parent, menunjukkan berapa kali lebih banyak properti yang dimiliki elemen A terhadap B, maka PC (EB,EA)= 1/ PC (EA,EB). Misalnya jika A 5 kali lebih besar daripada B, maka B=1/5 A.

2.    Aksioma Homogenitas

Aksioma ini menyatakan bahwa elemen yang dibandingkan tidak berbeda terlalu jauh. Jika perbedaan terlalu besar, hasil yang didapatkan mengandung nilai kesalahan yang tinggi. Ketika hirarki dibangun, kita harus berusaha mengatur elemen-elemen agar elemen tersebut tidak menghasilkan hasil dengan akurasi rendah dan inkonsistensi tinggi.

3.    Aksioma Ketergantungan

Aksioma ini menyatakan bahwa prioritas elemen dalam hirarki tidak bergantung pada elemen level di bawahnya. Aksioma ini membuat kita bisa menerapkan prinsip komposisi hirarki.

Share:

0 komentar:

Posting Komentar

Diberdayakan oleh Blogger.

Blogger templates